Parallel Computing with Mathematica
UVACSE Short Course

E Hall'

"University of Virginia Alliance for Computational Science and Engineering
uvacse@virginia.edu

October 8, 2014

(UVACSE) October 8, 2014 1/46

I
Outline

@ NX Client for Remote Linux Desktop
9 Parallel Computing with Mathematica
e Parallel Computing on the Linux Cluster

Q References

(UVACSE) October 8, 2014 2/46

Installing and Configuring NX Client

The NX client provides a Gnome Linux desktop interface to the login
node of the fir.itc Linux cluster.

http://uvacse.virginia.edu/resources/itc-linux-cluster-overview/the-nx-
client/

(UVACSE) October 8, 2014 3/46

http://uvacse.virginia.edu/resources/itc-linux-cluster-overview/the-nx-client/
http://uvacse.virginia.edu/resources/itc-linux-cluster-overview/the-nx-client/
http://uvacse.virginia.edu/resources/itc-linux-cluster-overview/the-nx-client/

Starting and Configuring NX Client

Once logged into fir.itc.virginia.edu through NX

@ Open a terminal from Applications/System Tools/Terminal menu
e Select and right-click on Terminal to add to launcher

@ Create a mathematica directory with mkdir command

@ Start web browser from icon at top of desktop

(UVACSE) October 8, 2014 4/46

NX Client for Remote Linux Desktop

Download Short Course Examples

Download the short-course materials from
http://www.uvacse.virginia.edu/software/mathematica-at-uva/

Follow the links,

—Parallel Mathematica

—Parallel Mathematica Short Course

and download 3 files to mathematica directory you create with
mkdir command

@ ClassExamples_Fai14.zip
@ mathematica-parallel_Fa14.pdf

(UVACSE) October 8, 2014 5/46

http://www.uvacse.virginia.edu/software/mathematica-at-uva/

Parallel Computing with Mathematica

Solving Big Technical Problems

Computationally intensive, long-running codes

@ Run tasks in parallel on many processors
@ Task parallel

Large Data sets

@ Load data across multiple machines that work in parallel
@ Data parallel

(UVACSE) October 8, 2014 6/46

Parallel Computing with Mathematica

Parallel Computing with Mathematica

Parallel computing in Mathematica is based on launching and
controlling multiple Mathematica kernel (worker) processes from within
a single master Mathematica, providing a distributed-memory
environment for parallel programming.

Tested on Unix, Linux, Windows, and Macintosh platforms and are well
suited to working locally on a multi-core machine or in a cluster of
machines,

Parallel computing is now provided as a standard part of Mathematica.

(UVACSE) October 8, 2014 7146

Parallel Computing with Mathematica

To perform computations in parallel, you need to be able to perform the
following tasks:
@ start processes and wait for processes to finish
@ schedule processes on available processors
@ exchange data between processes and synchronize access to
common resources

In the Mathematica environment, the term processor refers to a
running Mathematica kernel, whereas a process is an expression to be
evaluated.

(UVACSE) October 8, 2014 8/46

Connection Methods

Mathematica can run parallel workers locally on the same machine or
remotely on a compute cluster controlled by a resource management
application, e.g. PBSPro.

Local Kernels

The Local Kernels connection method is used to run parallel
workers on the same computer as the master Mathematica. It is
suitable for a multi-core environment, and is the easiest way to get
up and running with parallel computation.

In[25]:= $ProcessorCount

Out[25]= 2

Cluster Integration

The Cluster Integration connection method is used to run parallel
workers on a compute cluster from the master Mathematica
process. It integrates with the PBSPro cluster management

software.
(UVACSE) QOctober 8, 2014 9/46

Parallel Computing Functions

mathematica/guide/ParallelComputing.html

Automatic Parallelization

Parallelize — evaluate an expression using automatic parallelization
ParallelTry — try different computations in parallel, giving the first result
obtained

Computation Setup & Broadcasting »

ParallelEvaluate — evaluate an expression on all parallel subkernels
DistributeDefinitions — distribute definitions to all parallel subkernels
ParalleINeeds — load the same package into all parallel subkernels

(UVACSE) October 8, 2014 10/46

http://reference.wolfram.com/mathematica/guide/ParallelComputing.html

Parallel Computing with Mathematica

Parallel Computing Functions

Data Parallelism »
ParallelMap - ParallelTable - ParallelSum - ...
ParallelCombine — evaluate expressions in parallel and combine their results

Concurrency Control »

ParallelSubmit — submit expressions to be evaluated concurrently
WaitAll — wait for all concurrent evaluations to finish

WaitNext — wait for the next of a list of concurrent evaluations to finish

Shared Memory & Synchronization »

SetSharedVariable — specify symbols with values to synchronize across
subkernels

SetSharedFunction — specify functions whose evaluations are to be
synchronized

$SharedVariables - $SharedFunctions - UnsetShared - CriticalSection

(UVACSE) October 8, 2014 11/46

Parallel Computing Functions

Setup and Configuration »

LaunchKernels — launch a specified number of subkernels
$KernelCount — number of running subkernels

$KernelID - Kernels - AbortKernels - CloseKernels - ...
$ProcessorCount — number of processor cores on the current computer

Multi-Processor and Multicore Computation
Compile — create compiled functions that run in parallel
Parallelization — execute compiled functions in parallel

CompilationTarget — create machine-level parallel compiled functions

GPU Computing »
CUDAFunctionLoad — load a function to run on a GPU using CUDA
OpenCLFunctionLoad — load a function to run on a GPU using OpenCL

(UVACSE) October 8, 2014 12/46

Parallel Computing with Mathematica

Parallel Computing Features

Mathematica supports both task and data parallelism.

The main features of parallel computing in Mathematica are:

distributed memory, master/slave parallelism
written in Mathematica, machine independent
MathLink communication with remote kernels

exchange of symbolic expressions and programs with remote
kernels, not only numbers and arrays

virtual process scheduling or explicit process distribution to
available processors

virtual shared memory, synchronization, locking

parallel functional programming and automatic parallelization
support

(UVACSE) October 8, 2014 13/46

Programming Parallel Applications in Mathematica

To demonstrate demonstrate parallel processing in Mathematica, we

use ParallelEvaluate. If this is the first parallel computation, it will
launch the configured parallel kernels.

In[1]:= $ProcessorCount

Out[1)= 4

Inf2):= ParallelEvaluate[$ProcessID]
Outiz)= {957, 959, 961, 964}

In[3):= ParallelEvaluate[$MachineName]

Out3)l= {d-172-25-99-46, d-172-25-99-46,
d-172-25-99-46, d-172-25-99-46}

(UVACSE) October 8, 2014 14/ 46

Parallel Computing with Mathematica

Parallel Kernels Status Monitor

You can open the Parallel Kernels Status monitor through the
Evaluation > Parallel Kernel Status menu selection.

8.0.0 Parallel Kernel Status

4 kernels running, idle

ID [Name |Host Process CPU RAM Version Close

0 [master |d-172-25-89-46 526 79.997 24M 8.0

5 |local |d-172-25-99-46 957 18.812 14M 80 |C x
6 |local |d-172-25-99-46 959 18.846 14M 80 |C x)
7 |local |d-172-25-99-46 961 18.818 14M 8.0 ~——— X
8 |local |d-172-25-99-46 964 18.897 14M 80 |C x
[Close All) (‘Select Columns...) (Kernel Configuration...)

(UVACSE)

October 8, 2014

15/ 46

Parallel Computing with Mathematica

Parallel Preferences

The default settings of Mathematica automatically configure a number
of parallel kernels to use for parallel computation, as seen through the
Evaluation > Parallel Kernel Configuration menu selection.

(UVACSE) October 8, 2014 16/46

Parallel Preferences

8.0.0 Preferences

()
Interface Evaluation Appearance System Parallel Internet Connectivity Advanced

Master Kernel Name: Local | & !

General Preferences

Launch parallel kernels: (O Manual @) When needed () At startup
Evaluation failure handling: ORetry (® Abandon

[_] Try to relaunch failed kernels @ Enable parallel monitoring tools

Parallel Kernel Configuration
Total number of configured kernels: 4

[Local Kernels | Lightweight Grid =Cluster Integration Remote Kernels)

Local Kernels lets you easily launch kernels on a multi-core machine. =

Number of local kernels to use:
@ Automatic: 4 kernels
Number of processor cores is 4
@ Limit by license availability (4)
~

J Manual setting 0 [+ -]

M Run kernels at a lower process priority

(Di >
(Disable Local Kernels)

(N ((
(Reset to Defaults) (Help... : (Parallel Kernel Stams...:‘

October 8, 2014

17 /46

Parallel Computing with Mathematica

Launching and Connecting

Mathematica launches parallel kernels automatically as they are
needed, but you can also launch kernels manually with the command
LaunchKernels. This is be useful if you were running in a batch
mode.

Local Kernels

The Local Kernels connection method supports launching local
kernels directly from LaunchKernels by passing it an integer
(setting the number of kernels)

In(1:= LaunchKernels[4]

Outf1}= {KernelObject[l, local], KernelObject[2, local],
KernelObject[3, local], KernelObject[4, local]}

(UVACSE) October 8, 2014 18/46

Launching and Connecting

Cluster Integration configuration done through Parallel Preferences

Parallel Kernel Configuration
Total number of configured kernels: 48

Local Kernels = Lightweight Grid | Cluster Integration = Remote Kernels

Cluster Integration Package provides
an interface to cluster management software for launching kernels. =

Add Cluster Remove Cluster Duplicate Cluster

(Gl Kemels Enable | | ¢y ster name: |its_cluster
32 .- (%) A h
LE A + o Cluster engine: |Altair™ PBS Professional ® =
Head node: fir-s

¥ Advanced Settings
Engine path: K
Jusr/pbs
Kernel options:

-subkernel -mathlink -LinkMode Connect -Li-
nkProtocol TCPIP -LinkName " linkname"

Kernel program:

Jcommon/math/math |

UVACSE) October 8, 2014 19/46

Launching and Connecting

Cluster Integration configuration done through Parallel Preferences

Cluster Kemels Enable Cluster name: its_cluster

its_cluster 32 . x) i)
Cluster engine: Altair™ PBS Professional ® A
Head node: fir-s

¥ Advanced Settings
Duration:

4:00:00

Engine path:

Jusr/pbs

Kemel options:

-subkemel -mathlink -LinkMode Connect -
LinkProtocol TCPIP -LinkName °linkname’
Kemel program:

/common/math/math

Network interface: \J

(UVACSE) October 8, 2014 20/46

Parallel Computing with Mathematica

Launching and Connecting

Cluster Integration

The Cluster Integration connection method is used to run parallel
workers on the compute nodes of a cluster from the master
Mathematica.

The Cluster Integration connection method supports launching
kernels directly from LaunchKernels. To do so you must first
load the ClusterIntegration‘ package, this is shown below.

To launch on a particular cluster you have to pass the name for
that cluster into LaunchKernels.

(UVACSE) October 8, 2014 21/46

Parallel Computing with Mathematica

Launching and Connecting

Cluster Integration

<< "ClusterIntegration™"
ClusterIntegration PBS Private DebugPrint := Print

NumKernels=8;

LaunchKernels([
PBS["localhost", {"EnginePath" -> "/usr/pbs/",
"KernelProgram" -> "/common/math/math", "ToQueue" -> True,
"QueueName" -> "standard",
"BatchCommand" ->
"#!/bin/bash \n #PBS -N test \n #PBS -q standard \n #PBS -1 \

walltime=00:10:00 \n #PBS -0 \
/home/tehlm/math/gridmathematica/cse-030/test outl \n #PBS -j oe \

\n #PBS -1 select=1 \n “mathkernel’ "}], NumKernels]

October 8, 2014 22/46

(UVACSE)

Parallel Computing with Mathematica

Sending Commands to Remote Kernels

Values of variables defined on the local master kernel are usually not
available to remote kernels.

In[15]:= mykernel = First [Kernels[]]

Out[15]= KernelObject|[l, local]

In[16]:= & = 2;

ParallelEvaluate([a === 2, mykernel]

Out[17]= False

A convenlent way to insert variable values Into unevaluated commands IS 10 use Wwith, as

demonstrated In the following command. The symbol a Is replaced by 2, then the expression 2 === 2
is sent to the remote kernel where It evaluates 10 True.

In[18]:= With[{a = 2}, ParallelEvaluate[a === 2, mykernel]]

Out[18]= True
If you need variable values and definitions carried over to the remote
kernels, use DistributeDefinitions or shared variables.

(UVACSE) October 8, 2014 23 /46

Parallel Computing with Mathematica

Sending Commands to Remote Kernels

Recall that connections to remote kernels, as opened by
LaunchKernels, are represented as kernel objects. The commands
below take parallel kernels as arguments and use them to carry out
computations.

Low-Level Parallel Evaluation

ParallelEvaluate [cmd, kernel] sends cmd for evaluation to the parallel kernel kernel,
then waits for the result and returns

ParallelEvaluate [cmd, {kernels)] sends cmd for evaluation to the parallel kernels given,
then waits for the results and returns them

ParallelEvaluate [cmd] sends cmd for evaluation to all parallel kernels and
returns the list of results; equivalent to
ParallelEvaluate [cmd, Kernels |

(UVACSE) October 8, 2014 24 /46

Remote Definitions

Mathematica contains a command DistributeDefinitions that

makes it easy to transport local variables and function definitions to all
parallel kernels.

DistributeDefinitions[Sy, Sp, ... | distribute all definitions for symbolss; to all remote kernels

DistributeDefinitions["Context™ ") distributes definitions for all symbols in the specified

context

Higher-level parallel commands, such as Parallelize,
ParallelTable, ParallelSum, ... will automatically distribute
definitions of symbols occurring in their arguments.

(UVACSE) October 8, 2014 25/46

Sending Commands to Remote Kernels

Parallel Mapping and lterators

The commands in this section are fundamental to parallel programming in

Mathematica.
ParallelMap[f, h[e;,e;,...] evaluatesh[f[ei], [f[e2], ...] in parallel
ParallelTable| builds Table [expr,
expr, (i ig, iy ,di}, (i, do, 01y diy j, Joo J1e djys ...]
{Jrdordiedi}s...] in parallel; parallelization occurs along the
first (outermost) iterator {i, i, i1, di}
ParallelSum[...], computes sums and products in parallel
ParallelProduct]...]

Parallel evaluation, mapping, and tables.

ParallelMap [f, h[e1, ez, ...]] is a parallel version of
f/@h[e1, ez, ...] evaluating the individual f[e;] in parallel rather than
sequentially.

(UVACSE) October 8, 2014 26 /46

Parallel Computing with Mathematica

Automatic Distribution of Definitions

Parallel commands such as ParallelTable will automatically distribute the values and
functions needed, using effectively DistributeDefinitions.

For this parallel table, the function £ and the iterator bound n will evaluate on the subkernels, so
their definitions need to be distributed to make it work.

1= £[x_, v] :=x"y
{m, n} = {4, 2};

In[3):- ParallelTable[f[i, j], {i, m}, {j, n}]
ou(3]= {{1, 1}, {2, 4}, {3, 9}, {4, 16}}

This automatic distribution happens for any functions and variables you define
interactively, within the same notebook (technically, for all symbols in the default
context). Definitions from other contexts, such as functions from packages, are not
distributed automatically.

Lower-level functions, such as ParallelEvaluate, do not perform any automatic
distribution of values.

(UVACSE) October 8, 2014 27/46

Parallel Computing with Mathematica

Loading Packages on Remote Kernels

ParallelNeeds ["Context™ "] evaluate Needs ["Context™ "] on all available parallel kernels

Loading packages.

ParallelNeeds ["Context™ ") is essentially equivalent to

ParallelEvaluate [Needs ["Context™ "]], but it is remembered, and any newly launched remote
kernels will be initialized as well.

Exporting the context of a package you have loaded may not have the same effect on the remote
kernels as loading the package on each remote kernel with ParallelNeeds []. The reason is that
loading a package may perform certain initializations, and it may also define auxiliary functions in

other contexts (such as a private context). Also, a package may load additional auxiliary packages
that establish their own contexts.

The next two commands load the Mathematica package FiniteFields™ on the master kernel and all remote
kernels.

In[12]:~ Needs["FiniteFields™ "]

In[13]:= ParallelNeeds["FiniteFields™ "];

(UVACSE) October 8, 2014 28/46

Parallel Computing with Mathematica

Example: Eigenvalues of Matrices

Definitions
The parameter prec gives the desired precision for the computation of the eigenvalues of a random nxn
matrix.
In[1):= prec = 18;
The function mat generates a random nxn matrix with numeric entries.

In[2):= mat[n_] := RandomReal[{-1, 1}, {n, n}, WorkingPrecision -+ prec]
The function t£ measures the time it takes to find the eigenvalues.
In[3]:= tf[n_] := Timing[Eigenvalues[mat [n]]][[1]]

It is enough to distribute the definition of the main function t£. Any values it depends on will be distributed
automatically.
In[4]:~ DistributeDefinitions[tf]

Out[4]= {tf, mat, prec}

(UVACSE) October 8, 2014 29 /46

Parallel Computing with Mathematica

A Sample Run

Here you measure the time it takes to find the eigenvalues of 5x5 to 25x25 matrices. Because the
computations may happen on remote computers that differ in their processor speeds, the results do not
necessarily form an increasing sequence.

In[5]:~ ParallelMap[tf, {50, 60, 70, 80}]
out[5]= {0.894864, 1.63675, 2.69759, 3.70744}

Alternatively, you can perform the same computation on each parallel processor to measure their relative
speed. Here you find the speed of calculation of the eigenvalues of a 20x20 matrix on each of the parallel
processors.

In[6]:~ ParallelEvaluate[t£[70]]
outf6]- {2.99454, 2.39164, 2.71859, 2.46563}

(UVACSE) October 8, 2014 30/46

Parallel Computing with Mathematica

Automatic Parallelization

Parallelize [cmd|list, arguments...)] recognizes if cmd is a Mathematica function that

operates on a list or other long expression in 2 way that can be easily parallelized and
performs the parallelization automatically.

In[5]:~ Parallelize[Count[{1, 2, 3, 4,5, 6, 7}, _?PrimeQ]]

Out[S]= 4

In[6]:~ Parallelize[Map[f, {a, b, c, d, e, £}]]

out(6]= {f[a], £[b], £[c], £[d], f[e], £[£f]}

wl w2
x1 x2
In[7):= Paralloliza[{a, b, c, d}. vl y2]

zl z2

Out[7]- {awl +bxl+cyl+dzl, aw2 +bx2+cy2+dz2}

(UVACSE) October 8, 2014 31/46

Parallel Computing with Mathematica

Automatically Parallelizing Existing Serial Expressions

Use Parallelize to have Mathematica decide how to distribute work
across multiple kernels.

semiprimes =
Times @@@ Map [Prime, RandomInteger[{10 000, 1000000}, {1000, 2}], {2}];
Prime [10000]

104729

{timingl, result} =
AbsoluteTiming [Parallelize[Map[FactorInteger, semiprimes]]];
timingl

0.366724

{timing2, result} = AbsoluteTiming [Map [FactorInteger, semiprimes]];
timing2

0.695663

(UVACSE) October 8, 2014 32/46

Parallel Computing with Mathematica

Automatically Parallelizing Existing Serial Expressions

There is a natural trade-off in parallelization between controlling the
overhead of splitting a problem or keeping all the cores busy.

{timingl, result} =
AbsoluteTiming [Parallelize[Map[FactorInteger, semiprimes],
Method - "CoarsestGrained"]];
timingl

0.347445
{timing2, result} =
AbsoluteTiming [Parallelize[Map[FactorInteger, semiprimes],

Method - "FinestGrained"]];
timing2

0.855140

(UVACSE) October 8, 2014 33/46

Parallel Computing with Mathematica

Sending a Command to Multiple Kernels

Use ParallelEvaluate to send commands to multiple kernels and
wait for completion. Use with to bind locally defined variables before
distribution.

Take [
Flatten[ParallelEvaluate|
RandomInteger[{-100, 100}, Ceiling[100 / $KernelCount]]]], 100]

{55, 30, -55, 5, 30, -19, -76, 97, 69, 27, -70, 3, 68, -19, -92, 75, -55, -71,
18, 60, 17, -10, 26, -24, 70, 59, -66, -87, -64, 67, 15, -19, 52, 45, 93,
-92, -74, -87, 62, 75, -29, -39, -90, 58, 2, 23, 86, 52, 29, -20, -69,

-91, 66, -24, 25, 30, 21, 79, -95, -20, -76, 67, 43, 34, -62, -40, 81,

64, -33, 83, -26, 30, 78, -38, -81, -27, 61, -39, -100, 70, 40, 68, 46,

-54, 25, -59, -80, 33, -31, -81, 38, -25, -40, -70, 91, 8, 47, 18, 73, 93}

vars = With[{num = 1000},
Take [
Flatten[ParallelEvaluate[RandomInteger[{-100, 100},
Ceiling[num / $KernelCount]]]], num]];
Length[vars]

1000
(UVACSE) October 8,2014 34/46

Parallel Computing with Mathematica

Implementing Task-Parallel algorithms

ParallelDo

ParallelDo [expr, {ima}]
evaluates expr in parallel i, times.

ParallelDo [expr, {i, ima}]
evaluates expr in parallel with the variable i successively taking on the values 1 through iy, (in steps of 1).

ParallelDo [expr, (i, imins imax}]
starts with i = iy,.

ParallelDo [expr, {i, imins imaxs di}]
uses steps di.

ParallelDo [expr, {i, {i1, i,

uses the successive values iy, i, .

ParallelDo [expr, {iy bmins imax} s {Jr Jmin ¢ Jmax}s -
evaluates expr looping in parallel over different values of Jj. etc. for each i.

Implementing Data-Parallel algorithms

ParallelMap is a natural way to introduce parallelism using a
functional programming style. When you have a computationally
expensive function to execute of a large data set, Mathematica can

execute the operations in parallel by splitting the mapping among
multiple kernels.

Module [{data = RandomInteger[{10~40, 10"50}, 32]},
SeedRandom[8];
Column|[{
AbsoluteTiming [ParallelMap[PrimeOmega, data]],
AbsoluteTiming [Map [PrimeOmega, data]] }]

{15.373621, {3, 7,7, 7,8, 5,9,5,3,2,6, 8,
4,3,3,7,7,7,3,7,2,4,12,6,4,4,3,9,7,5,7, 6}}

{23.803586, (3,7, 7,7,8,5,9,5,3,2,6,8,
4,3,3,7,7,7,3,7,2,4,12,6,4,4,3,9,7,5,7, 6}}

(UVACSE) October 8, 2014 36/46

Parallel Computing with Mathematica

Decomposing a Problem in Parallel Data Sets

Estimating Pi Using Monte Carlo Simulation: Serial and Parallel.

r=1/2;

pts = RandomReal[{-r, r}, {50000, 2}];
insidepts = Select [pts, Norm[#1] < r &];
Length[insidepts] / (Length[pts] *xr"2) // N

3.13656

DistributeDefinitions[r];

pts = ParallelTable [RandomReal[{-r, r}, {50000, 2}],
{Length[Kernels[]]}];

insidepts = ParallelMap[Select[#, (Norm[#] <r &)] &, pts];

DistributeDefinitions [pts, insidepts];

N[

Mean [ParallelTable[Length[insidepts[[i]]] /
(Length[pts[[i]]] *r"2), {i, Length[Kernels[]]}]]]

3.13924

(UVACSE) October 8, 2014 37 /46

Parallel Computing with Mathematica

Decomposing a Problem in Parallel Data Sets

Graphic of work distribution among the 4 kernels.

With([{len = Length[pts]},
MapIndexed[
Graphics [{EdgeForm[Thick], White, Rectangle[{-r, -r}], Black, Circle[{0, 0}, r],
Hue [#2[[1]] /len], PointSize[small], Point[#1[[1]]], Lighter[Bue[#2[[1]]/len, .5]],

Point [Complement [#1[[1]], #1[[2]]]]}, ImageSize - 225] &,
Transpose [{pts, insidepts}]]]

October 8, 2014 38/46

Parallel Computing with Mathematica

Decomposing a Problem in Parallel Data Sets

You can generate multiple data sets in parallel, then plot or process
them further.

ListLinePlot [ParallelTable[Sin[n*Pi*x] /n, {n, 1, 4}, {x, 0, 2*Pi, 0.01}]]
10

035

-0.5

(UVACSE) October 8, 2014 39/46

Choosing an Appropriate Distribution Method

The parallel primitives Parallelize, ParallelMap,
ParallelTable, ParallelDo, ParallelSum, and
ParallelCombine support an option called Method

It allows you to specify the granularity of the subdivisions used to
distribute the computation across kernels.

Use Method — "FinestGrained" when the completion time of
each atomic unit of computation is expected to vary widely.

Use Method — "CoarseGrained" when the completion time of
each atomic unit of computation is expected to be uniform.

(UVACSE) October 8, 2014 40/46

Virtual Shared Memory

Virtual shared memory is a programming model that allows processors
on a distributed-memory machine to be programmed as if they had
shared memory. A software layer takes care of the necessary
communication in a transparent way.

Mathematica provides functions that implement virtual shared memory
for these remote kernels.

The drawback of a shared variable is that every access for read or
write requires communication over the network, so it is slower than
access to a local unshared variable.

Declaring shared variables and functions.

SetSharedVariable([s;, 52, ...] declares the symbols s; as shared variables

SetSharedFunction| f;, £ declares the symbols f; as shared functions or data types

(UVACSE) October 8, 2014 41/46

Parallel Computing with Mathematica

Mathematica Parallel Workflow

The toolbox enables application prototyping on the desktop with up to
16 local workers (left), and with the Mathematica Cluster Integration

package(right), applications can be scaled to multiple computers on a
cluster (subsitute Mathematica for Matlab in figure below).

Desktop System

Computer Cluster

Local Workers

{

(UVACSE)

Scheduler

Workers

October 8, 2014

42 /46

Scaling Up from the Desktop

Mathematica’s parallel computing provides the ability to use up to 16
local kernels on a multicore or multiprocessor computer.

When used together with Cluster Integration package, you can scale
up your application to use any number of kernels running on any
number of computers.

ITS Linux cluster allows for 128 kernels.

Alternatively, you can run up to 16 kernels on a single multi-core
compute node of the cluster.

(UVACSE) October 8, 2014 43 /46

Parallel Computing on the Linux Cluster

Running Mathematica on Cluster Front-end Node

Mathematica Parallel Computing jobs can be submitted to the ITC
Linux cluster by first logging onto the cluster front-end node
fir.itc.virginia.edu using the NX client.

Start up Mathematica from a Linux desktop terminal window.

Parallel Mathematica jobs can be submitted from with the Mathematica
notebook interface as well as using PBS command files and the
example scripts show how to setup and submit the jobs

Documentation: Submitting Mathematica Parallel Jobs

(UVACSE) October 8, 2014 44 /46

https://collab.itc.virginia.edu/access/content/group/3a39a42b-2e4b-4cd2-b59f-6185ddc04136/Parallel%20Mathematica/Parallel%20Mathematica%20Short%20Course

Parallel Computing on the Linux Cluster

Example Mathematica Scripts

The files in this folder are organized into two groups:

Mathematica Script M-files that can be run interactively from the
Mathematica notebook to illustrate various Parallel Computing constructs.

math scriptl.m Example script M-file using that estimates Pi with a Monte
Carlo method using local kernels.

math script2.m Example script M-file using that estimates Pi with a Monte
Carlo method using remote kernels on the cluster compute nodes.

Job Submission script files that submit a job through PBS Pro to the
cluster using the Mathematica M-files from above.

math _submitl.sh PBS script to submit a Mathematica parallel job to run
on multiple cores of a single cluster compute node.

math_submit2.m PBS script to submit a Mathematica parallel job to run
on multiple cores across multiple cluster compute nodes.

Notebook files that contain code examples.

parallel mathematica_ex.nb Code examples from lecture slides.

(UVACSE) October 8, 2014 45/ 46

References

References

@ Parallel Computing Tools User Guide
reference.wolfram.com/mathematica/ParallelTools/tutorial/Overview.html

© Parallel Computing: Mathematica Documentation
reference.wolfram.com/mathematica/guide/ParallelComputing.html

© Mathematica Cookbook, by Sal Mangano, O’Reilly Press.

Need further help? Email uvacse@virginia.edu.

(UVACSE) October 8, 2014 46 /46

http://reference.wolfram.com/mathematica/ParallelTools/tutorial/Overview.html
http://reference.wolfram.com/mathematica/ParallelTools/tutorial/Overview.html
http://reference.wolfram.com/mathematica/ParallelTools/tutorial/Overview.html
http://reference.wolfram.com/mathematica/guide/ParallelComputing.html
http://reference.wolfram.com/mathematica/guide/ParallelComputing.html

