
ECE 4501/6501 Fundamentals of Computing 2023
Instructor: Prof. Avik Ghosh
HW#8
Due Sunday 19 Nov 2023
(35+25+20 = 80 points)

On my honor as a student, I have neither given nor received unautho-
rized assistance on this exam.

(sign name above)
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Problem 1: Find CCNOT and CSWAP matrices.[35
points]
Listen to Lecture 12 on Quantum Gates. The CCNOT (Toffoli gate) oper-
ates on a set of 23 possible inputs of 3-bit numbers, |000⟩ through |111⟩, to
generate an equal number of outputs. The truth table is easy to write down
– basically you flip the third bit if and only if both the first and second bits
are unity.

C|000⟩ =⇒ |000⟩
C|001⟩ =⇒ |001⟩

. . . =⇒ . . .

C|110⟩ =⇒ |111⟩
C|111⟩ =⇒ |110⟩ (1)

In class, we saw that the two 1-bit input states can be written as 2 × 1
matrices

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
(2)

which satisfy orthonormality

⟨ψi|ψj⟩ = δij (3)

and completeness ∑
i

|ψi⟩⟨ψi| = |0⟩⟨0| + |1⟩⟨1| = I2×2 (4)

(a) Let us understand completeness first. Show that any ket |R⟩ can be writ-
ten as a superposition |R⟩ =

∑
nRn|ψn⟩. (Hint, left multiply by ⟨ψ|m).[2

points]

(b) By analogy, each of the independent 3-bit input states to the left of
the CCNOT truth table can be written as a 23 × 1 vectors of the form

|000⟩ =


1
0
0
. . .
0

 , |001⟩ =


0
1
0
. . .
0

 , . . . , |111⟩ =


0
0
0
. . .
1

 (5)
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Show that each 8 × 1 vector can be obtained by a simple kronecker product
of the corresponding binary elements, e.g.

|000⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩
|001⟩ = |0⟩ ⊗ |0⟩ ⊗ |1⟩

. . .

|111⟩ = |1⟩ ⊗ |1⟩ ⊗ |1⟩ (6)

[10 points]

(c) Now, use spectral decomposition. Verify that the basis sets above also
satisfy the completeness theorem involving the 8 × 8 identity matrix

|000⟩⟨000| + |001⟩⟨001| + . . .+ |111⟩⟨111| = I8×8 (7)

We can then use
C = CI8×8 (8)

and replace I3×3 with Eq. 7, and then replace the actions C|000⟩ with |000⟩
and so on from Eq. 1 to extract the final sums of ket-bras | . . .⟩⟨. . . | +
| . . .⟩⟨. . . | + . . ., and then replace with the vector assignments earlier from
Eq. 5 to get the final 8 × 8 matrix for the CNOT operator C. [10 points]

(d) Repeat for the CSWAP (Fredkin) operator. [10 points]

(e) Verify that each matrix is unitary, ie, they satisfy

UU † = U †U = I (9)

Unitarity guarantees that the quantum evolution of a vector {ψ} =⇒ U{ψ}
is reversible in time. [3 points]
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Problem 2: Spin operators [25 points]
The Pauli spin operators and the 2D identity matrices are given by

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
(10)

(a) Find the eigenvalues of the four matrices. [10 points]

To recap how we do this for an arbitrary matrix M , we need to execute

M{u} = λ{u} (11)

meaning (
M11 − λ M12
M21 M22 − λ

)(
u1
u2

)
=
(

0
0

)
(12)

To avoid {u} from becoming trivially zero, we need to make sure the matrix
on the left is non-invertible, meaning its determinant must vanish. This
should give λ.

(b) Find the 2 × 1 eigenvectors of the 3 Pauli matrices. We do this by
substituting each λ into the equation above, and finding the ratio u1/u2.
Also note that the vector must be normalized, meaning |u1|2 + |u2|2 = 1.[10
points]
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(c) Verify that the eigenvectors of any of the spin matrices are (a) orthonor-
mal, ie, ⟨ψi|ψj⟩ = δij , and complete, ie,

∑
i |ψi⟩⟨ψi| = I2×2. [2.5 points]

(d) As a test for completeness, show that any Hermitian matrix
(

A B
B∗ C

)
with A,C real, can be written as a superposition of the Pauli and identity
matrices. In other words, these 4 matrices completely span the 2-D space.
[2.5 points]
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Problem 3: Quantum Boltzmann for spins [20 points]
Consider 3 spin 1/2 electrons on a row. Their z-spin state is given by

Sz = 1
2

[
σz ⊗ I2×2 ⊗ I2×2 + I2×2 ⊗ σz ⊗ I2×2 + I2×2 ⊗ I2×2 ⊗ σz

]
(13)

(a) Show that the eigenvalues of this operator, which are the spin-z values,
are 3/2, 1/2, -1/2, -3/2 (In general, for N spin-1/2 particles, the eigenvalues
will go from +N/2 corresponding to all spins up, to −N/2 for all spins down,
and all values in between separated by 1).[10 points]

(b) Apply a magnetic field hz (don’t worry about units) along the z di-
rection, a magnetic coupling J between two sets of z-directed spins, and
a magnetic field hx along the x-direction as well. Use the resulting 8 × 8
Hamiltonian to extract the Boltzmann probability. Repeat this for Fully
Quantum (ie, Boltzmann of the H matrix - use ‘expm’ within Matlab and
trace to normalize) and Classical (drop off-diagonals of the H matrix using
diag(diag(H)) before doing the expm)

Use the subplot(2,3,1)... subplot(2,3,6) commands to plot the 6 cases below
on the same plot. In each case, use bar(x,diag(P),0.2,’b’) to plot the bars of
P with thickness 0.2 for the Quantum in blue, and on the same subplot with
hold on, plot bar(x+0.2,diag(P),0.2,’r’) for the classical bars in red displaced
laterally for easy viewing. Here x=linspace(1,8,8).

Use
set(gca,’xticklabel’,dec2bin(0:7),’fontsize’,25);
legend(’Quantum’,’Classical’,’fontsize’,35)
to show the x-axis in terms of binary configurations, and put the legends on
the plots.

Execute for the following 6 cases, and in case, explain what you are see-
ing.

(i) Quantum and classical for J=20 (ferromagnet), hz=0, hx=0.
(ii) J=-20 (antiferromagnet), hz=0, hx=0
(iii) J=20, hz=5, hx=0;
(iv) J=-20, hz=5, hx=0;
(v) J=20, hz=5, hx=15;
(vu) J=-20, hz=5, hx=15;
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For each case, you can increase the H further (say by 20X) and see if that
sharpens your results. Low temperature (high energy) is typically cleaner
to look at.[10 points]
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