Medical Imaging of Hyperpolarized Gases

Wilson Miller
University of Virginia
Department of Radiology

October 7
SPIN 2008
Nuclear Magnetic Resonance

- Excitation
- RF pulse
- Magnetization vector

- Net alignment
Nuclear Magnetic Resonance

Precesses at resonance frequency

\[\omega = \gamma B \]

Magnetization vector

Net alignment
Nuclear Magnetic Resonance

Precesses at resonance frequency

\[\omega = \gamma B \]

\[T = \frac{2\pi}{\omega} \]

RF coil

NMR Signal
Nuclear Magnetic Resonance

Boltzmann distribution

\[P_{\text{thermal}} = \frac{|N_{\uparrow} - N_{\downarrow}|}{N_{\uparrow} + N_{\downarrow}} = \tanh\left(\frac{\gamma h B}{4\pi k T}\right) \]

Large magnetic field
(1.5 ~ 3.0 Tesla)
Nuclear Magnetic Resonance

Boltzmann distribution

$^1\text{H Polarization}$

Thermal polarization:
$\sim 0.0005\ %$ at 1.5 T
(5 parts per million)

Large magnetic field
(1.5 ~ 3.0 Tesla)
Magnetic Resonance Imaging

Frequency encoding:
Gradient maps spatial location to frequency

\[x \leftrightarrow \omega \]

Signal is Fourier transform:

\[s(t) = \int \rho(x) e^{-i\omega(x)t} \, dx \]

Magnetic field gradient:

\[\vec{B} = (B_0 + xG_x)\vec{z} \]
Magnetic Resonance Imaging

2003 Nobel Prize in medicine!

Frequency encoding:
Gradient maps spatial location to frequency

\[x \leftrightarrow \omega \]

Signal is Fourier transform:

\[s(t) = \int \rho(x)e^{-i\omega(x)t} \, dx \]

Magnetic field gradient:

\[\overrightarrow{B} = (B_0 + xG_x)\hat{z} \]
Hyperpolarized Noble-Gas MRI

- Spin-exchange optical pumping (SEOP)
- Polarization: \(~0.0005\% \rightarrow 50\%\)
- Stable spin-1/2 noble gases: \(^3\text{He}, \ ^{129}\text{Xe}\)
- 129Xe: 500 mL ~10% (1 hour)
- 3He: 1 L, 30~40% (15 hours)
Polarization Cell
Polarize overnight

- Current polarizer: 30-40% polarization
 1 liter 3He per day
- New polarizer: 40-% polarization
 3 liters 3He per day

Dispense into bag

![Graph showing 3He spin-up with $T_{fit} = 4.6$ hrs]
Siemens Avanto (1.5 Tesla)

Vest-shaped RF coil
(48.5 MHz for 3He)

Inhale gas from bag
Hyperpolarized Noble-Gas MRI

- Contrast agent?
- Directly image the inhaled gas

Static Ventilation Imaging

Healthy Subject

Asthmatic

Static Ventilation Imaging

- Severe-persistent asthmatic

Pre Albuterol Post Albuterol

Chest radiograph

Unusual Subject

3He MRI

Pneumatocele
3D Static Ventilation Imaging

Axial

Coronal

Sagittal

Isotropic 3mm resolution

3D Static Ventilation Imaging
Ventilation Imaging Applications

- Asthma
- Chronic obstructive pulmonary disease (COPD)
- Cystic Fibrosis
- Lung transplant / rejection
MR Grid Tagging

“Tag” the magnetization

End-inspiration

End-expiration

Displacement
2-Phase Grid Tagging

- Temporal resolution of displacement vectors achieved via linear interpolation

Pulse sequence parameters:
- Tag spacing 22 mm
- 5 coronal slices (TH 25 mm), flip angle 4°
- 50% angular density, heavily interleaved
- TR / TE = 3.4 / 1.2 ms
- 870 ms per full image set
- Temporal pseudo-resolution 50 ms
GW Miller et al. Regional quantification of pulmonary biomechanics using dynamic MRI of grid-tagged hyperpolarized 3He. ISMRM 15:945 (Berlin, 2007).
Tagging Applications

• Pulmonary Biomechanics
 ➢ Chronic obstructive pulmonary disease (COPD)

• Radiation Therapy
T1-Weighted Contrast

- Hyperpolarized nuclei
 - T1 in bag is tens of minutes
 - T1 in lung is \(\sim 20 \) seconds, due to \(\text{O}_2 \)
 - T1-weighted \(^3\text{He}\) imaging provides
 - \(P_{\text{A} \text{O}_2} \) contrast

Thermally polarized nuclei
Quantitative PO$_2$ Mapping

Phantom experiments

\begin{align*}
\text{pO}_2 \text{ [atm]} & \quad \text{3He image} \\
\text{0.00} & \quad \text{0.20} \\
\text{0.10} & \quad \text{0.15} \\
\text{0.05} & \quad \text{0.05} \\
\text{0.00} & \quad \text{0.00}
\end{align*}

\begin{align*}
\text{Measured pO}_2 \text{ [atm]} & \quad \text{Prepared pO}_2 \text{ [atm]} \\
0 & \quad 0 \\
0.1 & \quad 0.1 \\
0.2 & \quad 0.2
\end{align*}
P_AO_2 Mapping in Human Lungs

Healthy volunteer – inhaled 3He plus room air

- Coronal projection
- 3 cm slice
P_AO_2 Mapping in Human Lungs

Healthy volunteer – 2 different inhalations

3He + room air \quad 3He + O_2

Mean = 101 mm Hg \quad Mean = 227 mm Hg

GW Miller et al. Short-breath-hold lung pO$_2$ mapping with hyperpolarized 3He MRI. ESMRMB 22 (Basle, 2005).
PAO₂ Mapping in Human Lungs

Female, age 65, left-lung transplant

GW Miller et al. Short-breath-hold pO₂ imaging with ³He: Initial experience in lung disease. ISMRM 14:1289 (Seattle, 2006).
$P_{A}O_2$ Applications

- Pulmonary embolus
- Sickle Cell disease
- High-Altitude Pulmonary Edema
Lung Structure vs. Imaging Resolution

Pixel resolution ~ 3 mm

3He image of rabbit lung
Lung Structure vs. Imaging Resolution

Fine lung structure

acinus ~3 mm

Alveoli ~200 µm
Diffusion as a Probe of Microstructure

“Apparent Diffusion Coefficient” (ADC)

Normal Alveolar Sac

small, healthy airspaces

Low 3He ADC

Emphysematous Alveolar Sac

enlarged, diseased airspaces

High 3He ADC
How do we measure diffusion using NMR?

- Use magnetic-field gradients to encode displacement
Diffusion-Weighted Pulse Sequence

Precessing spins in lab frame

Vector sum in rotating frame
Diffusion-Weighted Pulse Sequence

Precessing spins in lab frame

Vector sum in rotating frame
Diffusion-Weighted Pulse Sequence

Precessing spins in lab frame

Vector sum in rotating frame
Diffusion-Weighted Pulse Sequence

Precessing spins in lab frame

Vector sum in rotating frame

G_x

Precessing spins in lab frame
Diffusion-Weighted Pulse Sequence

Precessing spins in lab frame

Vector sum in rotating frame
Diffusion-Weighted Pulse Sequence

Precessing spins in lab frame

Vector sum in rotating frame
Diffusion-Weighted Pulse Sequence

Precessing spins in lab frame

Vector sum in rotating frame

G_x

B_x

time
Diffusion-Weighted Pulse Sequence

Vector sum in rotating frame

\[S_1 = S_0 e^{-b \cdot ADC} \]

- Use this equation to extract ADC
- So-called “b value” can be calculated from gradient waveform (free diffusion)
3He ADC: Lung Transplant

- 3He free diffusion coefficient: ~0.9 cm²/s in air
Time-Dependent Diffusivity

Normal Lung

Emphysema

Histology is “gold standard” for characterizing microstructure
Time-Dependent Diffusivity

Emphysema

Normal

Simulated Brownian motion

\[D(t) \]

\[D_0 \]

\[t \]

free diffusion

restricted diffusion

very restricted diffusion
Time vs. Length Scales

\[\Delta x \sim \sqrt{2D \cdot \Delta t} \]

Time vs. Length Scales

\[\Delta x \sim \sqrt{2D \cdot \Delta t} \]

- Structural sensitivity determined by diffusion time
Diffusion Applications

Structural information!

- Emphysema
- Lung development
- Asthma?
- Smoking-related lung disease
<table>
<thead>
<tr>
<th></th>
<th>Low Exposure</th>
<th>High Exposure</th>
<th>Smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short time scale (~1 ms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long time scale (~1 s)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C Wang et al. Detection of the Changes in the Lungs of People who had High Exposure to Secondhand Cigarette Smoke Using Long-time-scale Global \(^3\)He Diffusion MRI. RSNA 93 (Chicago, 2007).
What about 129Xe?

- **Cons**
 - Intrinsically lower MR signal
 - Absorbed into tissues and blood

- **Pros**
 - Naturally abundant
 - Absorbed into tissues and blood
Dissolved-Phase Imaging

- Solubility ~1%
- Resonance frequency in dissolved phase is different by ~200 ppm (chemical shift)
- Blood, tissue frequencies slightly different
Chemical-Shift Imaging (CSI)

- Image both gas and dissolved phases, separate based on frequency
- Rabbit with pulmonary embolus

J Mata et al. High-resolution Chemical Shift Imaging of the lungs with Xe-129 during a single 6 second breath-hold: Results from a rabbit model of pulmonary embolism. ISMRM 16:2679 (Toronto, 2008).
Dixon-based CSI

- Separately image both dissolved-phase resonances
- Rat with pulmonary fibrosis
Dixon-Based CSI

Airspaces Barrier (tissue) Red Blood Cells

Control

Left lung treated with Bleomycin (day 11 post)

Indirect Imaging of Gas Exchange

Xenon Transfer Contrast (XTC)

- Dynamic equilibrium among compartments
- Repeated, selective destruction of non-equilibrium dissolved magnetization
- Exploit large gas-phase magnetization as an amplifier for weak dissolved-phase signals

Effects of Exchange on Gas Signal

Gas Peak: Exchange

Gas Peak: Control

Effects of Exchange on Gas Signal
Applications of 129Xe Transfer

- Opens up lots of new possibilities
 - Direct window into gas exchange
 - Tissue density
 - Surface-to-Volume ratio (S/V)
- Fibrosis
- Pulmonary edema
- Radiation injury
Hyperpolarized-Gas MRI

- New insight into lung function and disease
- Earlier detection of lung disease
- Regional assessment of microstructure
- Regional maps of gas exchange
- Efficacy of therapy → drug development
- Minimally invasive
- Safely repeated