The JLab Frozen Spin Target

Christopher D. Keith JLab Target Group

The g9 Tagged Photon Experiments in CLAS

- E02 112: Search for Missing Nucleon Resonances in Hyperon Photoproduction
- E03 105: Pion Photoproduction from a Polarized Target
- E04 104: Helicity Structure of Pion Photoproduction
- E05 012: Measurement of Polarization Observables in Eta-Photoproduction with CLAS
- E06 013: Measurement of $\pi^+ \pi^-$ Photoproduction in Double-Polarization Experiments using CLAS

<u>Common physics goals</u>: Spectroscopy of baryon resonances.

<u>Experimental technique</u>: Measure **multiple** single- and double-spin observables using **all combinations** of linearly *and* circularly polarized photons, incident on longitudinally *and* transversely polarized protons.

First round of experiments used *longitudinally* polarized target — completed Feb. 2008

Second round requires *transverse* target polarization. — scheduled for 2010

g9 Experimental Layout

The Existing Hall B Polarized Target

Dynamically polarized NH₃/ND₃ target Temperature: 1K Polarizing Magnet: 5T Helmholtz pair

-longitudinal only -limits acceptance $\vartheta \le 55^{\circ}$

Construct (at JLab) a **Frozen Spin Target** with acceptance up to 135°, and both longitudinal *and* transverse capabilities

The Frozen Spin Technique

Operation is more complicated:

- 1) Polarize target (DNP) at high field (5 T) and low temperature (~ 0.5 K)
- 2) "Freeze" the spins at very low temperature (~ 0.05 K)
- 3) Maintain polarization polarization using a smaller magnet (0.5 T) with beam on target
- 4) Repeat steps 1 3 as needed

Polarization decay time T_1 depends on material, field, and temperature.

Goal: $T_1 = 500$ hrs $\Delta P/P = -5\%$ per day

FROST: Design Specifications

<u>Material</u>: 5 g frozen butanol (C_4H_9OH) + TEMPO (0.5% wt)

<u>Polarizing Conditions:</u> 5 Tesla at 0.3 K Cooling requirements: ~ 20 mW

Polarization: ± 85%

<u>Frozen Spin Conditions</u>: 0.5 Tesla at 50 mK Cooling requirements: ~ 10 μ W

Proton Relaxation Time: $T_1 \ge 500$ hours $\triangle P/P = -5\%$ per day

FROST: Equipment List

- 1 ³He/⁴He dilution refrigerator
- 1 superconducting polarizing magnet + power supply
- 1 superconducting holding magnet + power supply
- 1 microwave generator + waveguide components
- 2 NMR coils + Q-meter circuits
- 2 control computers (EPICS + LabView)
- 2 gas panels + 22 valves
- 18 vacuum pumps
 - 7 vacuum gate valves
- 30 thermometers
- 18 vacuum/pressure gauges
 - 1 residual gas analyzer
 - 4 LHe level meters
 - 3 chillers

One Small Problem...

Target must be polarized outside of CLAS and **roll forward** (while cold!) for data acquisition phase.

Polarizing Mode

- Microwaves ON
- Polarizing magnet ON
- Holding magnet OFF
- Temperature $\sim 1/2$ K
- Photon beam OFF

Transition Mode

- Microwaves OFF
- Polarizing magnet OFF
- Holding magnet ON
- Temperature ≤0.07 K
- Photon beam OFF

Transition Mode

- Microwaves OFF
- Polarizing magnet OFF
- Holding magnet ON
- Temperature ≤0.07 K
- Photon beam OFF

Frozen Spin Mode

- Microwaves OFF
- Polarizing magnet OFF
- Holding magnet ON
- Temperature ≤0.05 K
- Photon beam ON

FROST in Hall B, February 2008

FROST Horizontal Dilution Refrigerator

Thermometry & heater

3He fill tube

PCTFE)

Frozen Spin Target: Material

5 g frozen butanol, 1 - 2 mm beads

Target material is inserted into mixing chamber.

NMR coils (2) and microwave waveguide are fixed outside the mixing chamber.

FROST Heat shield and holding coil

Holding coil, longitudinal or transverse, attaches to 1 K heat shield.

Also serves as a microwave cavity.

Field: 0.56 Tesla @ 22.3 A $\Delta B/B: < 3 \ 10^{-3}$ Bore: Ø 50 mm Thickness: 0.1 mm NbTi wire (3 layers)

Longitudinal Holding Coil and NMR Spectra

and NMR Spectra

Field: 0.54 Tesla @ 38.5 A $\Delta B/B: < 8 \ 10^{-3}$ Bore: Ø 50 mm Thickness: 0.1 mm NbTi wire (4 layers)

5 Tesla Polarizing Magnet and NMR spectra

Max. Field: 5.1 T @ 82.5 A $\Delta B/B$: < 3×10⁻⁵ Bore: Ø127 mm

> Cryomagnetics, Inc. Oak Ridge, TN

Frozen Spin Target: Base Temperature

³He Flow (mmol/s)

Frozen Spin Target: Cooling Power

300 mK:	60 mW	
100 mK:	10 mW	
50 mK:	800 μ W	

Refrigerator ran continuously Oct. 29 '07 thru Feb. 12 '08 (~1100 hours of beam time)

Frozen Spin Target: Polarization

<u>Positive Polarization</u>
7 times (1 unscheduled)
~ 80%

<u>Negative Polarization</u> 10 times (3 unscheduled) ~ -85%

All unscheduled polarizations due to failure of holding coil power supply.

Frozen Spin Target: Relaxation Time

Positive Polarization \sim 3500 hours, w/o beam ~ 2700, w/ beam **Negative Polarization** ~ 1800 hours, w/o beam ~ 1400, w/ beam Polarization loss $\sim 1 - 1.5\%$ per day. Re-polarize every 5 – 7 days.

Frozen Spin Target: Relaxation Time of Butanol

Frozen Spin Target: Summary

• A Frozen Spin Target of polarized protons has been built for tagged photon experiments inside CLAS.

• In its first use (2007), FROST met or exceeded all design goals.

• FROST utilizes an internal, superconducting holding coil (H > 0.5 T) while in Frozen Spin mode.

• Coils have been fabricated to provide either longitudinal or transverse holding fields.

• With a base temperature < 30 mK, extraordinarily long (> 3000 hours) relaxation times were measured for the butanol target.

Additional Slides

Frozen Spin Target: Collaboration

JLab Target Group (*past member, *unofficial member) Dr. Chris Keith (project leader, DR design, day-to-day operation) Dr. Mike Seely (holding magnets) Dr. David Meekins (target material preparation) James Brock, Mark Hoegerl (fabrication & assembly) David Griffiths (electrical) Chris Carlin, *Sue Witherspoon (software) Paul Hood, *Rusty Salmons, *Steve Knight (vacuum & plumbing) *Amy Comer (heat exchanger R&D) *Jim Rohrbach (machinist extraordinaire)

Hall B

Dr. Volker Burkert (signed the checks) David Kashy & Pete Hemler (target cart design) Mike Zarecky (draftsman) Doug, Tom, Jill, Dennie, Calvin & rest of technical staff

Dr. Eugene Pasyuk (Arizona State U.) - liaison w/ g9 collaboration