# McIntire Investment Institute

AT THE UNIVERSITY OF VIRGINIA



# **Disruptive Technologies**

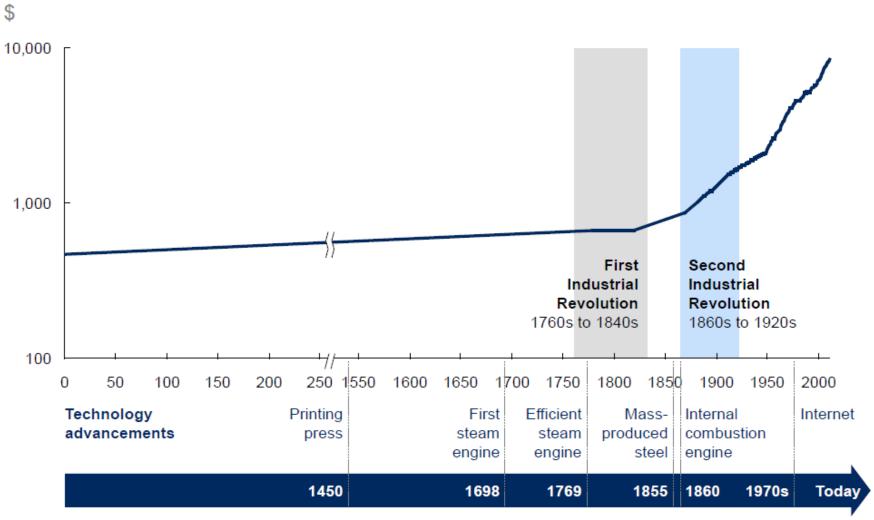
Presented by Ryan Rechkemmer | October 17<sup>th</sup>, 2013

#### **DISRUPTIVE TECHNOLOGIES**

"Advances that will transform life, business, and the global economy"

#### **McKinsey Global Institute's Criteria**

- The technology is rapidly advancing or experiencing breakthroughs
- The potential scope of impact is broad
- Significant economic value could be affected
- Economic impact is potentially disruptive


#### **General Observations**

- "Creative disruption" alters the economics of an industry
- Societal challenges accompany the "next big thing"



#### HISTORICAL PRECEDENT





SOURCE: Angus Maddison, "Statistics on World Population, GDP and Per Capita GDP, 1–2008 AD"; McKinsey Global Institute analysis



### CASE STUDY



- Focused on preserving its leadership in the photographic film market
- Developed and marketed "filmbased digital imaging"
- Underestimated competition from Fujifilm
- Made unrelated acquisitions to diversify its business
- Belatedly transitioned to digital photography



• Filed for Chapter 11 bankruptcy in January 2012

### 12 POTENTIALLY DISRUPTIVE TECHNOLOGIES



Mobile Internet



Advanced oil and gas exploration and recovery



Automation of knowledge work



3D printing

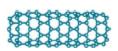


Internet of Things



Next-generation genomics




Cloud technology



**Energy storage** 



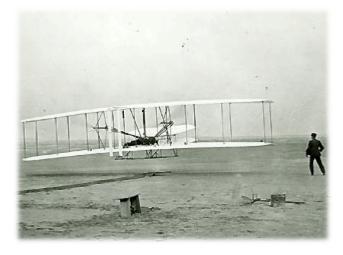
Advanced robotics



Advanced materials

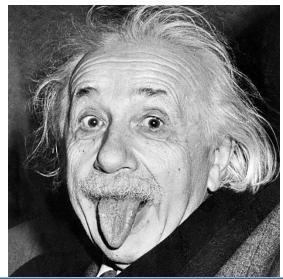


Autonomous and near-autonomous vehicles




Renewable energy

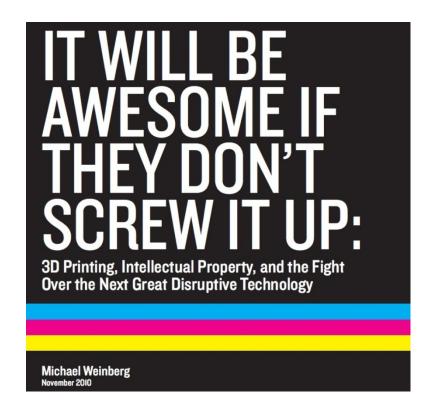



#### Underestimated Disruptive Technologies

"The desktop computer industry is dead. Innovation has virtually ceased. Microsoft dominates with very little innovation. That's over. Apple lost."
– Steve Jobs, 1996



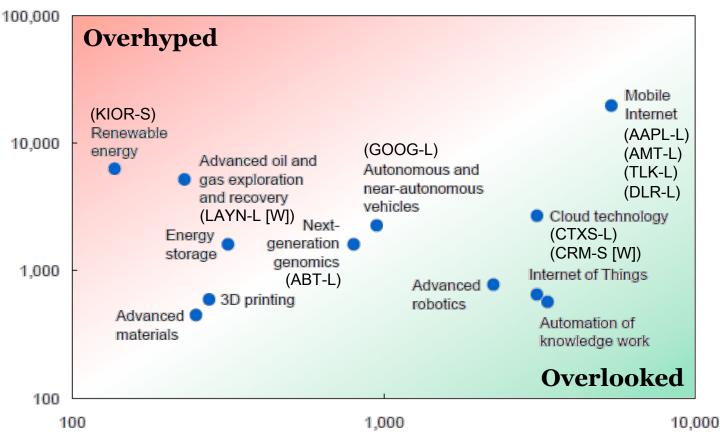
"Not within a thousand years will man ever fly!" – Wilbur Wright, 1901


"There is not the slightest indication that nuclear energy will ever be obtainable. It would mean that the atom would have to be shattered at will." Albert Einstein





#### **DE-RAILED DISRUPTIVE TECHNOLOGIES**


"Nuclear powered vacuum cleaners will probably be a reality within 10 years." —Alex Lewyt, quoted in the New York Times, June 10th, 1955



#### Too Much or Too Little Attention

#### Media attention

Number of relevant articles in major general interest and business publications over 1 year (log scale)



Potential economic impact across sized applications \$ billion (log scale)

some applications and is not a comprehensive estimate of total

NOTE: Estimates of potential economic impact are for only some applications and is not a comprehensive estimate of total potential impact. Estimates include consumer surplus and cannot be related to potential company revenue, market size, or GDP impact. We do not size possible surplus shifts among companies and industries, or between companies and consumers. These estimates are not risk- or probability-adjusted.

SOURCE: Factiva; McKinsey Global Institute analysis



#### OTHER TECHNOLOGIES OF INTEREST

# **Runner-Ups**

- Next-generation nuclear (fission)
- Fusion power
- Carbon sequestration
- Advanced water purification
- Quantum computing

# **Honorable Mentions**

- Private space flight
- OLED / LED lighting
- Wireless charging
- Flexible displays
- 3D and volumetric displays

# GROUP BREAKOUT ACTIVITY

#### <u>Task</u>

- Select a disruptive technology 1.
- Meet the corresponding Manager or Associate to form a group (see below) 2.
- Research and discuss the investment implications of your technology 3.

| Disruptive Technology                         | Group Leader |  |  |
|-----------------------------------------------|--------------|--|--|
| 3D printing                                   | Ajay         |  |  |
| Advanced materials                            | Ryan R.      |  |  |
| Advanced oil and gas exploration and recovery | Chase        |  |  |
| Advanced robotics                             | Joe          |  |  |
| Automation of knowledge work                  | Alvin        |  |  |
| Autonomous and near-autonomous vehicles       | Rahul        |  |  |
| Cloud technology                              | Kevin        |  |  |
| Energy storage                                | Max          |  |  |
| Internet of Things                            | Selena       |  |  |
| Mobile Internet                               | Harrison     |  |  |
| Next-generation genomics                      | Jessica      |  |  |
| Renewable energy                              | Mitchell     |  |  |

#### 12 POTENTIALLY DISRUPTIVE TECHNOLOGIES



Mobile Internet

Increasingly inexpensive and capable mobile computing devices and Internet connectivity



Next-generation genomics

Fast, low-cost gene sequencing. advanced big data analytics, and synthetic biology ("writing" DNA)



Automation of knowledge work

Intelligent software systems that can perform knowledge work tasks involving unstructured commands and subtle judgments



Energy storage

Devices or systems that store energy for later use, including batteries



Internet of Things

Networks of low-cost sensors and actuators for data collection, monitoring, decision making, and process

optimization



3D printing

Additive manufacturing techniques to create objects by printing layers of material based on digital models



Cloud technology

Use of computer hardware and software resources delivered over a network or the Internet, often as a service



Advanced materials

Materials designed to have superior characteristics (e.g., strength, weight,

conductivity) or functionality



Advanced robotics

Increasingly capable robots with enhanced senses, dexterity, and intelligence used to automate tasks or augment humans



Advanced oil and gas exploration and recovery

Exploration and recovery techniques that make extraction of unconventional

oil and gas economical



Autonomous and near-autonomous vehicles

Vehicles that can navigate and operate with reduced or no human intervention



Renewable energy

Generation of electricity from renewable sources with reduced harmful climate

impact

# SPEED, SCOPE, AND ECONOMIC VALUE AT STAKE

|                   |                                                        | Illustrative rates of technology improvement and diffusion                                                                                  | Illustrative groups, products, and resources that could be impacted <sup>1</sup>                                                                                             | Illustrative pools of economic value that could be impacted <sup>1</sup>                                                                                   |
|-------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Next-<br>generation<br>genomics                        | 10 months Time to double sequencing speed per dollar 100x Increase in acreage of genetically modified crops, 1996–2012                      | 26 million Annual deaths from cancer, cardio-vascular disease, or Type 2 diabetes 2.5 billion People employed in agriculture                                                 | \$6.5 trillion Global health-care costs \$1.1 trillion Global value of wheat, rice, maize, soy, and barley                                                 |
| (a)+ -)           | Energy<br>storage                                      | 40% Price decline for a lithium-ion battery pack in an electric vehicle since 2009                                                          | billion     Cars and trucks globally     1.2 billion     People without access to electricity                                                                                | \$2.5 trillion Revenue from global consumption of gasoline and diesel \$100 billion Estimated value of electricity for households currently without access |
|                   | 3D printing                                            | 90% Lower price for a home 3D printer vs. 4 years ago 4x Increase in additive manufacturing revenues in past 10 years                       | 320 million Manufacturing workers, 12% of global workforce 8 billion Annual number of toys manufactured globally                                                             | \$11 trillion Global manufacturing GDP \$85 billion Revenue from global toy sales                                                                          |
|                   | Advanced materials                                     | \$1,000 vs. \$50  Difference in price of 1 gram of nanotubes over 10 years  115x  Strength-to-weight ratio of carbon nanotubes vs. steel    | 7.6 million tons Annual global silicon consumption 45,000 metric tons Annual global carbon fiber consumption                                                                 | \$1.2 trillion Revenue from global semiconductor sales \$4 billion Revenue from global carbon fiber sales                                                  |
| L <del>CARE</del> | Advanced<br>oil and gas<br>exploration<br>and recovery | 3x Increase in efficiency of US gas wells, 2007–11 2x Increase in efficiency of US oil wells, 2007–11                                       | 22 billion Barrels of oil equivalent in natural gas produced globally 30 billion Barrels of crude oil produced globally                                                      | \$800 billion Revenue from global sales of natural gas \$3.4 trillion Revenue from global sales of crude oil                                               |
|                   | Renewable<br>energy                                    | 85% Lower price for a solar photovoltaic cell per watt since 2000  19x Growth in solar photovoltaic and wind generation capacity since 2000 | 21,000 TWh  Annual global electricity consumption 13 billion tons  Annual CO <sub>2</sub> emissions from electricity generation, more than from all cars, trucks, and planes | \$3.5 trillion Value of global electricity consumption \$80 billion Value of global carbon market transactions                                             |

<sup>1</sup> Not comprehensive; indicative groups, products, and resources only.

SOURCE: McKinsey Global Institute analysis



<sup>2</sup> For CDC-7600, considered the world's fastest computer from 1969 to 1975; equivalent to \$32 million in 2013 at an average inflation rate of 4.3% per year since launch in 1969.

<sup>3</sup> Baxter is a general-purpose basic manufacturing robot developed by startup Rethink Robotics.

|    |                                                   | Illustrative rates of technology improvement and diffusion                                                                                                                                                                                                                     | Illustrative groups, products, and resources that could be impacted <sup>1</sup>                                                                                                                                                          | Illustrative pools of economic value that could be impacted <sup>1</sup>                                                        |
|----|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|    | Mobile<br>Internet                                | \$5 million vs. \$400 <sup>2</sup><br>Price of the fastest supercomputer in 1975 vs. that of<br>an iPhone 4 today, equal in performance (MFLOPS)                                                                                                                               | 4.3 billion People remaining to be connected to the Internet, potentially through mobile Internet                                                                                                                                         | \$1.7 trillion GDP related to the Internet \$25 trillion                                                                        |
|    |                                                   | 6x<br>Growth in sales of smartphones and tablets since<br>launch of iPhone in 2007                                                                                                                                                                                             | 1 billion Transaction and interaction workers, nearly 40% of global workforce                                                                                                                                                             | Interaction and transaction worker<br>employment costs, 70% of global<br>employment costs                                       |
|    | Automation<br>of knowledge<br>work                | 100x Increase in computing power from IBM's Deep Blue (chess champion in 1997) to Watson (Jeopardy winner in 2011) 400+ million Increase in number of users of intelligent digital assistants like Siri and Google Now in last 5 years                                         | 230+ million Knowledge workers, 9% of global workforce 1.1 billion Smartphone users, with potential to use automated digital assistance apps                                                                                              | \$9+ trillion<br>Knowledge worker employment costs,<br>27% of global employment costs                                           |
|    | Internet of<br>Things                             | 300% Increase in connected machine-to-machine devices over past 5 years 80–90% Price decline in MEMS (microelectromechanical systems) sensors in last 5 years                                                                                                                  | 1 trillion     Things that could be connected to the Internet across industries such as manufacturing, health care, and mining     100 million     Global machine to machine (M2M) device connections across sectors like transportation, | \$36 trillion Operating costs of key affected industries (manufacturing, health care, and mining)                               |
|    |                                                   |                                                                                                                                                                                                                                                                                | security, health care, and utilities                                                                                                                                                                                                      |                                                                                                                                 |
|    | Cloud<br>technology                               | 18 months Time to double server performance per dollar 3x Monthly cost of owning a server vs. renting in the cloud                                                                                                                                                             | 2 billion Global users of cloud-based email services like Gmail, Yahoo! and Hotmail 80% North American institutions hosting or planning to host critical applications on the cloud                                                        | \$1.7 trillion GDP related to the Internet \$3 trillion Enterprise IT spend                                                     |
|    | Advanced robotics                                 | 75–85% Lower price for Baxter³ than a typical industrial robot 170% Count in color of industrial robots 2000, 44                                                                                                                                                               | 320 million  Manufacturing workers, 12% of global workforce                                                                                                                                                                               | \$6 trillion Manufacturing worker employment costs, 19% of global employment costs                                              |
|    |                                                   | Growth in sales of industrial robots, 2009–11                                                                                                                                                                                                                                  | 250 million<br>Annual major surgeries                                                                                                                                                                                                     | \$2-3 trillion<br>Cost of major surgeries                                                                                       |
|    | Autonomous<br>and near-<br>autonomous<br>vehicles | 7 Miles driven by top-performing driverless car in 2004 DARPA Grand Challenge along a 150-mile route 1,540 Miles cumulatively driven by cars competing in 2005 Grand Challenge 300,000+ Miles driven by Google's autonomous cars with only 1 accident (which was human-caused) | 1 billion Cars and trucks globally 450,000 Civilian, military, and general aviation aircraft in the world                                                                                                                                 | \$4 trillion Automobile industry revenues \$155 billion Revenue from sales of civilian, military, and general aviation aircraft |
| 13 |                                                   | -M c I                                                                                                                                                                                                                                                                         | ntire Investme                                                                                                                                                                                                                            | ent Institute                                                                                                                   |

