
1 © 2013 The MathWorks, Inc.

Parallel Computing with MATLAB

Scott Benway

Senior Account Manager

Jiro Doke, Ph.D.

Senior Application Engineer

3

Approach Options

Best coding practices
Preallocation, vectorization, profiling

(“Speeding Up MATLAB Applications”)

More hardware
More Processors, Cores, or GPUs

(MATLAB Parallel Computing Tools)

Integration with other

languages

C/C++, Fortran

(MEX, MATLAB Coder)

Acceleration Strategies Applied in MATLAB

4

 Introduction to parallel computing tools

 Using multicore/multi-processor computers

 Using graphics processing units (GPUs)

 Scaling up to a cluster

Agenda

5

Using More Hardware

 Built-in multithreading

– Automatically enabled in MATLAB since R2008a

– Multiple threads in a single MATLAB computation engine

 Parallel Computing using explicit techniques

– Multiple computation engines controlled by a single session

– Perform MATLAB Computations on GPUs

– High-level constructs to let you parallelize MATLAB applications

www.mathworks.com/discovery/multicore-matlab.html

http://www.mathworks.com/discovery/multicore-matlab.html
http://www.mathworks.com/discovery/multicore-matlab.html
http://www.mathworks.com/discovery/multicore-matlab.html

6

Going Beyond Serial MATLAB Applications

MATLAB

Desktop (Client)

Worker

Worker

Worker

Worker

Worker

Worker

7

Parallel Computing Toolbox for the Desktop

 Speed up parallel applications

 Take advantage of GPUs

 Prototype code for your cluster

MATLAB

Desktop (Client)

Local

Desktop Computer

8

Scale Up to Clusters and Clouds

MATLAB

Desktop (Client)

Local

Desktop Computer

Cluster

Computer Cluster

Scheduler

9

 Introduction to parallel computing tools

 Using multicore/multi-processor computers

 Using graphics processing units (GPUs)

 Scaling up to a cluster

Agenda

10

Programming Parallel Applications (CPU)

 Built-in support with Toolboxes

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

11

Example: Optimizing Cell Tower Position
Built-in parallel support

 With Parallel Computing Toolbox

use built-in parallel algorithms in

Optimization Toolbox

 Run optimization in parallel

 Use pool of MATLAB workers

12

Tools Providing Parallel Computing Support

 Optimization Toolbox, Global Optimization Toolbox

 Statistics Toolbox

 Signal Processing Toolbox

 Neural Network Toolbox

 Image Processing Toolbox

 …

BLOCKSETS

Directly leverage functions in Parallel Computing Toolbox

www.mathworks.com/builtin-parallel-support

http://www.mathworks.com/builtin-parallel-support
http://www.mathworks.com/builtin-parallel-support
http://www.mathworks.com/builtin-parallel-support
http://www.mathworks.com/builtin-parallel-support
http://www.mathworks.com/builtin-parallel-support

13

Programming Parallel Applications (CPU)

 Built-in support with Toolboxes

 Simple programming constructs:

 parfor, batch, distributed

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

14

 Ideal problem for parallel computing

 No dependencies or communications between tasks

 Examples: parameter sweeps, Monte Carlo simulations

Independent Tasks or Iterations

Time Time

blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

15

Example: Parameter Sweep of ODEs
Parallel for-loops

  Parameter sweep of ODE system

– Damped spring oscillator

– Sweep through different values

of damping and stiffness

– Record peak value for each

simulation

 Convert for to parfor

 Use pool of MATLAB workers



  0
,...2,1,...2,1

5

 xkxbxm 

17

Programming Parallel Applications (CPU)

 Built-in support with Toolboxes

 Simple programming constructs:
parfor, batch, distributed

 Advanced programming constructs:
createJob, labSend, spmd

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

18

 Introduction to parallel computing tools

 Using multicore/multi-processor computers

 Using graphics processing units (GPUs)

 Scaling up to a cluster

Agenda

19

What is a Graphics Processing Unit (GPU)

 Originally for graphics acceleration, now

also used for scientific calculations

 Massively parallel array of integer and

floating point processors

– Typically hundreds of processors per card

– GPU cores complement CPU cores

 Dedicated high-speed memory

* Parallel Computing Toolbox requires NVIDIA GPUs with Compute Capability 1.3 or

higher, including NVIDIA Tesla 20-series products. See a complete listing at

www.nvidia.com/object/cuda_gpus.html

http://www.nvidia.com/object/cuda_gpus.html

20

Core 1

Core 3 Core 4

Core 2

Cache

Performance Gain with More Hardware

Using More Cores (CPUs) Using GPUs

Device Memory

GPU cores

Device Memory

21

Programming Parallel Applications (GPU)

 Built-in support with Toolboxes

 Simple programming constructs:
gpuArray, gather

 Advanced programming constructs:
arrayfun, bsxfun, spmd

 Interface for experts:

 CUDAKernel, MEX support

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

www.mathworks.com/gpu

http://www.mathworks.com/gpu

22

Example: Solving 2D Wave Equation
GPU Computing

Intel Xeon Processor W3690 (3.47GHz),

NVIDIA Tesla K20 GPU

𝜕2𝑢

𝜕𝑡2 =
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2

23

 Introduction to parallel computing tools

 Using multicore/multi-processor computers

 Using graphics processing units (GPUs)

 Scaling up to a cluster

Agenda

24

Example: Migrate from Desktop to Cloud

 Change hardware without

changing algorithmic code



  0
,...2,1,...2,1

5

 xkxbxm 

25

Use MATLAB Distributed Computing Server

MATLAB

Desktop (Client)

Local

Desktop Computer

Profile
(Local)

1. Prototype code

MATLAB
code

26

Use MATLAB Distributed Computing Server

Cluster

Computer Cluster

Scheduler

Profile
(Cluster)

1. Prototype code

2. Get access to an

enabled cluster

27

Use MATLAB Distributed Computing Server

MATLAB

Desktop (Client)

Local

Desktop Computer

Cluster

Computer Cluster

Scheduler

Profile
(Local)

Profile
(Cluster)

MATLAB
code

MATLAB
code

1. Prototype code

2. Get access to an

enabled cluster

3. Switch cluster

profile to run on

cluster resources

28

 Offload computation:

– Free up desktop

– Access better computers

 Scale speed-up:

– Use more cores

– Go from hours to minutes

 Scale memory:

– Utilize distributed arrays

– Solve larger problems without re-coding algorithms

Cluster

Computer Cluster

Scheduler

Take Advantage of Cluster Hardware

MATLAB

Desktop (Client)

29

Offloading Computations

 Send desktop code to cluster resources

– No parallelism required within code

– Submit directly from MATLAB

 Leverage supplied infrastructure

– File transfer / path augmentation

– Job monitoring

– Simplified retrieval of results

 Scale offloaded computations

MATLAB
code

Cluster

Computer Cluster

Scheduler

30

MATLAB

Desktop (Client)

Offload Computations with batch

Result

Work

Worker

Worker

Worker

Worker

batch(…)

31

MATLAB

Desktop (Client)

Offload and Scale Computations with batch

Result

Work

Worker

Worker

Worker

Worker

batch(…,'Pool',…)

32

Example: Parameter Sweep of ODEs
Offload and Scale Processing

 Offload processing to workers:

batch

 Scale offloaded processing:

batch(…,'Pool',…)

 Retrieve results from job:

fetchOutputs



  0
,...2,1,...2,1

5

 xkxbxm 

33

Benchmark: Parameter Sweep of ODEs
Scaling case study for a fixed problem size with a cluster

Processor: Intel Xeon E5-2670

16 cores per node

Workers
Computation

 (minutes)
Speed-up

1 173 1

16 13 13

32 6.4 27

64 3.2 55

96 2.1 83

128 1.6 109

160 1.3 134

192 1.1 158

34

Distributed Array

Lives on the Workers

Remotely Manipulate Array

from Client

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Distributing Large Data

Worker

Worker

Worker

Worker

MATLAB

Desktop (Client)

35

Investigation: Distributed Calculations

Effect of number of computers on execution time

Processor: Intel Xeon E5-2670

16 cores, 60 GB RAM per compute node

10 Gigabit Ethernet

N

Time (s)

1 node,

multi-

threaded

Distributed

2 nodes,

32W

4 nodes,

64W

4000 2 3 3

8000 16 14 12

16000 126 102 67

20000 244 187 118

32000 - 664 394

40000 - - 710

36

MATLAB Distributed Computing Server

 Extension of desktop parallel computing

 Pre-built framework and infrastructure

 Simplified license and maintenance

Cluster

Computer Cluster

Scheduler

37

Dynamic Licensing Model

 Users have access to their

licensed products

 Server does not check out

any licenses on the client

 User can exit MATLAB once

the job is queued

Cluster

Computer Cluster

Scheduler MATLAB

User A

MATLAB

User B

38

Job Schedulers

 MathWorks Job Scheduler

 Direct support for specific schedulers

 (Platform LSF, Microsoft HPCS, PBS)

 Open API to support other schedulers

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

www.mathworks.com/products/distriben/supported

http://www.mathworks.com/products/distriben/supported

39

Summary

 Easily develop parallel MATLAB applications without

being a parallel programming expert

 Speed up the execution of your MATLAB applications

using additional hardware

 Develop parallel applications on your desktop and

easily scale to a cluster when needed

40

For more information

Visit

http://www.mathworks.com/products/parallel-computing

© 2013 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names

may be trademarks or registered trademarks of their respective holders.

http://www.mathworks.com/parallel-computing
http://www.mathworks.com/products/parallel-computing
http://www.mathworks.com/products/parallel-computing
http://www.mathworks.com/products/parallel-computing
http://www.mathworks.com/products/parallel-computing
http://www.mathworks.com/products/parallel-computing
http://www.mathworks.com/trademarks

