References

1. White, J., and Schornberg, K., 2012. A new player in the puzzle of filovirus entry. Nature Reviews 10: 317-322.

2. Zhao, Y., et al., 2016. Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 535: 169-172.

3. RCSB Protein Data Bank. http://www.rcsb.org/pdb/home/home.do.

4. Protein identification and analysis tools on the ExPASy server. Gasteiger, E. et. al. In J. M. Walker (Ed.) The proteomics protocols handbook. Totowa, New Jersey: Humana Press Inc. 2005.

5. Sakurai, Y., et al, 2015. Two?pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347, 995–998.

6. Dube, D., et al, 2009. The Primed Ebolavirus Glycoprotein (19-Kilodalton GP1,2): Sequence and Residues Critical for Host Cell Binding. Journal of Virology 83: 2883–2891.

7. Lee, J., Saphire, E., 2009. Ebolavirus glycoprotein structure and mechanism of entry. Future Virology 4: 621-635.

8. Brindley, M., et al, 2007. Ebola Virus Glycoprotein 1: Identification of Residues Important for Binding and Postbinding Events. Journal of Virology. 81: 7702-7709.

9. Gregory, S., et al, 2011. Structure and function of the complete internal fusion loop from Ebolavirus glycoprotein 2. Proceedings of the National Academy of Science 108: 11211–11216.

10. Basic Local Alignment Search Tool. National Center for Biotechnology Information. 2012. http://www.ncbi.nlm.nih.gov/blast/Blast.cgi

11. Dali server: conservation mapping in 3D. Nucl. Acids Res. 38, W545-549. Holm L, Rosenström, P. 2010.

12. Hashiguchi, T., et al, 2015. Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell 160: 904-912.